If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+200x-40000=0
a = 1; b = 200; c = -40000;
Δ = b2-4ac
Δ = 2002-4·1·(-40000)
Δ = 200000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{200000}=\sqrt{40000*5}=\sqrt{40000}*\sqrt{5}=200\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(200)-200\sqrt{5}}{2*1}=\frac{-200-200\sqrt{5}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(200)+200\sqrt{5}}{2*1}=\frac{-200+200\sqrt{5}}{2} $
| 6b+4/12=- | | 5x+2x+3=2-3x+10x+1 | | 22p+11=22p-7 | | 42j-18-19j=28 | | 6(1+3m0=-8(-2m+5)-4 | | 6(1+3m0=-8(-2m+50-4 | | 19-6e=14e | | 1.5=7/n | | 〖x〗^2-16=0 | | 3t-15=4t | | 12=k(3) | | 6(m–5)=2(m+29) | | 6(m–5)=2(m+29 | | (4x+6)/(4x-5)=-2 | | x°=180°-(44°+x°) | | -15z-8=-25z-27 | | 2x(6x)= | | 8-4x-1x-2=5x-14 | | 2x+19-8x=-3 | | 4(2-×)-(x+2)=6+5(x-4) | | 18t/3+6=t/6 | | h(5)=-15 | | x/5+3=x/3+2 | | -8y-14=2(-4y-7 | | (x-1)/4=x+5 | | 2x+3=6776 | | -8(3x-2)=-24x-15 | | (2,3)m=1 | | x+3=24x=163x+2=14 | | Xx3=180 | | 5x+9=x/5+3 | | 8y+4=3(y-1) |